Comment on "A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies" (L. Eça and M. Hoekstra, Journal of Computational Physics 262 (2014) 104-130)

نویسندگان

  • Tao Xing
  • Frederick Stern
چکیده

Eça and Hoekstra [1] proposed a procedure for the estimation of the numerical uncertainty of CFD calculations based on the least squares root (LSR) method. We believe that the LSR method has potential value for providing an extended Richardson-extrapolation solution verification procedure for mixed monotonic and oscillatory or only oscillatory convergent solutions (based on the usual systematic grid-triplet convergence condition R). Current Richardson-extrapolation solution verification procedures [2–7] are restricted to monotonic convergent solutions 0 < R < 1. Procedures for oscillatory convergence simply either use uncertainty estimate based on average maximum minus minimum solutions [8,9] or arbitrarily large factors of safety (F S ) [2]. However, in our opinion several issues preclude the usefulness of the presented LSR method: five criticisms follow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to the Slide Modeling Method for the Efficient Solution of Heat Conduction Calculations

Determination of the maximum temperature and its location is the matter of the greatest importance in many technological and scientific engineering applications. In terms of numerical calculations of the heat conduction equation by using uniform mesh increments in space, large computational cost is sometimes countered. However, adaptive grid refinement method could be computationally efficient ...

متن کامل

Numerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)

The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...

متن کامل

A Numerical Trim Variation Study for Ships Operating in Off-design Conditions. the Validation of Rans Code Results and the Explanation of the Physical Effects of the Flow around a Hull Subject to Trim Variation

Fuel efficiency is an important factor for the shipping industry both regarding new build vessels and existing vessels. A method to reduce the fuel consumption of existing vessels operating in off design conditions is to trim a vessel in the most optimum trim condition. The current approach to determine the most efficient trim condition is to perform propulsion tests under different trim condit...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries

In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 301  شماره 

صفحات  -

تاریخ انتشار 2015